Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transplantation ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421879

RESUMO

BACKGROUND: Polyclonal rabbit antithymocyte globulins (ATGs) are commonly used in organ transplantation as induction. Anti-N-glycolylneuraminic acid carbohydrate antibodies which develop in response to rabbit carbohydrate antigens might lead to unwanted systemic inflammation. LIS1, the first new generation of antilymphocyte globulins (ALGs) derived from double knockout swine, lacking carbohydrate xenoantigens was already tested in nonhuman primates and rodent models. METHODS: This open-label, single-site, dose escalation, first-in-human, phase 1 study evaluated the safety, T cell depletion, pharmacokinetics, and pharmacodynamics of LIS1. In an ascending dose cohort (n = 5), a primary kidney transplant recipient at low immunologic risk (panel reactive antibody [PRA] < 20%), received LIS1 for 5 d at either 0.6, 1, 3, 6, or 8 mg/kg. After each patient completed treatment, the data safety monitoring board approved respective dose escalation. In the therapeutic dose cohort (n = 5) in patients with PRA <50% without donor specific antibodies, 2 patients received 8 mg/kg and 3 patients 10 mg/kg. RESULTS: CD3+ T cell depletion <100/mm3 at day 2 was observed in all patients who received 6, 8, and 10 mg/kg of LIS1. The terminal half-life of LIS1 was 33.7 d with linearity in its disposition. Lymphocyte repopulation was fast and pretransplant lymphocyte subpopulation counts recovered within 2-4 wk. LIS1 was well tolerated, neither cytokine release syndrome nor severe thrombocytopenia or leukopenia were noticed. Antibodies to LIS1 were not detected. CONCLUSIONS: In this first-in-human trial, genome-edited swine-derived polyclonal LIS1 ALG was well tolerated, did not elicit antidrug antibodies, and caused time-limited T cell depletion in low- and medium-risk kidney transplant recipients.

3.
Front Immunol ; 14: 1137629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875084

RESUMO

Anti-thymocyte or anti-lymphocyte globulins (ATGs/ALGs) are immunosuppressive drugs used in induction therapies to prevent acute rejection in solid organ transplantation. Because animal-derived, ATGs/ALGs contain highly immunogenic carbohydrate xenoantigens eliciting antibodies that are associated with subclinical inflammatory events, possibly impacting long-term graft survival. Their strong and long-lasting lymphodepleting activity also increases the risk for infections. We investigated here the in vitro and in vivo activity of LIS1, a glyco-humanized ALG (GH-ALG) produced in pigs knocked out for the two major xeno-antigens αGal and Neu5Gc. It differs from other ATGs/ALGs by its mechanism of action excluding antibody-dependent cell-mediated cytotoxicity and being restricted to complement-mediated cytotoxicity, phagocyte-mediated cytotoxicity, apoptosis and antigen masking, resulting in profound inhibition of T-cell alloreactivity in mixed leucocyte reactions. Preclinical evaluation in non-human primates showed that GH-ALG dramatically reduced CD4+ (p=0.0005,***), CD8+ effector T cells (p=0.0002,***) or myeloid cells (p=0.0007,***) but not T-reg (p=0.65, ns) or B cells (p=0.65, ns). Compared with rabbit ATG, GH-ALG induced transient depletion (less than one week) of target T cells in the peripheral blood (<100 lymphocytes/L) but was equivalent in preventing allograft rejection in a skin allograft model. The novel therapeutic modality of GH-ALG might present advantages in induction treatment during organ transplantation by shortening the T-cell depletion period while maintaining adequate immunosuppression and reducing immunogenicity.


Assuntos
Globulinas , Transplante de Órgãos , Coelhos , Animais , Suínos , Linfócitos , Transplante Homólogo , Linfócitos B
4.
Front Immunol ; 12: 761250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868003

RESUMO

Amino acid substitutions and deletions in the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can reduce the effectiveness of monoclonal antibodies (mAbs). In contrast, heterologous polyclonal antibodies raised against S protein, through the recognition of multiple target epitopes, have the potential to maintain neutralization capacities. XAV-19 is a swine glyco-humanized polyclonal neutralizing antibody raised against the receptor binding domain (RBD) of the Wuhan-Hu-1 Spike protein of SARS-CoV-2. XAV-19 target epitopes were found distributed all over the RBD and particularly cover the receptor binding motives (RBMs), in direct contact sites with the angiotensin converting enzyme-2 (ACE-2). Therefore, in Spike/ACE-2 interaction assays, XAV-19 showed potent neutralization capacities of the original Wuhan Spike and of the United Kingdom (Alpha/B.1.1.7) and South African (Beta/B.1.351) variants. These results were confirmed by cytopathogenic assays using Vero E6 and live virus variants including the Brazil (Gamma/P.1) and the Indian (Delta/B.1.617.2) variants. In a selective pressure study on Vero E6 cells conducted over 1 month, no mutation was associated with the addition of increasing doses of XAV-19. The potential to reduce viral load in lungs was confirmed in a human ACE-2 transduced mouse model. XAV-19 is currently evaluated in patients hospitalized for COVID-19-induced moderate pneumonia in phase 2a-2b (NCT04453384) where safety was already demonstrated and in an ongoing 2/3 trial (NCT04928430) to evaluate the efficacy and safety of XAV-19 in patients with moderate-to-severe COVID-19. Owing to its polyclonal nature and its glyco-humanization, XAV-19 may provide a novel safe and effective therapeutic tool to mitigate the severity of coronavirus disease 2019 (COVID-19) including the different variants of concern identified so far.


Assuntos
Anticorpos Heterófilos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Heterófilos/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Variação Antigênica , Anticorpos Amplamente Neutralizantes/uso terapêutico , COVID-19/terapia , COVID-19/virologia , Modelos Animais de Doenças , Epitopos , Humanos , Imunização Passiva , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Domínios e Motivos de Interação entre Proteínas , Glicoproteína da Espícula de Coronavírus/genética , Suínos , Carga Viral/efeitos dos fármacos , Soroterapia para COVID-19
5.
Eur J Immunol ; 51(6): 1412-1422, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33576494

RESUMO

Heterologous polyclonal antibodies might represent an alternative to the use of convalescent plasma or monoclonal antibodies (mAbs) in coronavirus disease (COVID-19) by targeting multiple antigen epitopes. However, heterologous antibodies trigger human natural xenogeneic antibody responses particularly directed against animal-type carbohydrates, mainly the N-glycolyl form of the neuraminic acid (Neu5Gc) and the α1,3-galactose, potentially leading to serum sickness or allergy. Here, we immunized cytidine monophosphate-N-acetylneuraminic acid hydroxylase and α1,3-galactosyl-transferase (GGTA1) double KO pigs with the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor binding domain to produce glyco-humanized polyclonal neutralizing antibodies lacking Neu5Gc and α1,3-galactose epitopes. Animals rapidly developed a hyperimmune response with anti-SARS-CoV-2 end-titers binding dilutions over one to a million and end-titers neutralizing dilutions of 1:10 000. The IgG fraction purified and formulated following clinical Good Manufacturing Practices, named XAV-19, neutralized spike/angiotensin converting enzyme-2 interaction at a concentration <1 µg/mL, and inhibited infection of human cells by SARS-CoV-2 in cytopathic assays. We also found that pig GH-pAb Fc domains fail to interact with human Fc receptors, thereby avoiding macrophage-dependent exacerbated inflammatory responses and a possible antibody-dependent enhancement. These data and the accumulating safety advantages of using GH-pAbs in humans warrant clinical assessment of XAV-19 against COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/terapia , SARS-CoV-2/imunologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/farmacologia , COVID-19/genética , Galactosiltransferases/deficiência , Galactosiltransferases/imunologia , Células HEK293 , Humanos , Imunização Passiva , SARS-CoV-2/genética , Ácidos Siálicos/genética , Ácidos Siálicos/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Soroterapia para COVID-19
6.
bioRxiv ; 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34013271

RESUMO

Perfusion of convalescent plasma (CP) has demonstrated a potential to improve the pneumonia induced by SARS-CoV-2, but procurement and standardization of CP are barriers to its wide usage. Many monoclonal antibodies (mAbs) have been developed but appear insufficient to neutralize SARS-CoV-2 unless two or three of them are being combined. Therefore, heterologous polyclonal antibodies of animal origin, that have been used for decades to fight against infectious agents might represent a highly efficient alternative to the use of CP or mAbs in COVID-19 by targeting multiple antigen epitopes. However, conventional heterologous polyclonal antibodies trigger human natural xenogeneic antibody responses particularly directed against animal-type carbohydrate epitopes, mainly the N-glycolyl form of the neuraminic acid (Neu5Gc) and the Gal α1,3-galactose (αGal), ultimately forming immune complexes and potentially leading to serum sickness or allergy. To circumvent these drawbacks, we engineered animals lacking the genes coding for the cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) and α1,3-galactosyl-transferase (GGTA1) enzymes to produce glyco-humanized polyclonal antibodies (GH-pAb) lacking Neu5Gc and α-Gal epitopes. We found that pig IgG Fc domains fail to interact with human Fc receptors and thereby should confer the safety advantage to avoiding macrophage dependent exacerbated inflammatory responses, a drawback possibly associated with antibody responses against SARS-CoV-2 or to avoiding a possible antibody-dependent enhancement (ADE). Therefore, we immunized CMAH/GGTA1 double knockout (DKO) pigs with the SARS-CoV-2 spike receptor-binding domain (RBD) to elicit neutralizing antibodies. Animals rapidly developed a hyperimmune response with anti-SARS-CoV-2 end-titers binding dilutions over one to a million and end-titers neutralizing dilutions of 1:10,000. The IgG fraction purified and formulated following clinical Good Manufacturing Practices, named XAV-19, neutralized Spike/angiotensin converting enzyme-2 (ACE-2) interaction at a concentration < 1µg/mL and inhibited infection of human cells by SARS-CoV-2 in cytopathic assays. These data and the accumulating safety advantages of using glyco-humanized swine antibodies in humans warranted clinical assessment of XAV-19 to fight against COVID-19.

7.
Transplantation ; 104(4): 715-723, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31764762

RESUMO

BACKGROUND: Humanized immune system immunodeficient mice have been extremely useful for the in vivo analyses of immune responses in a variety of models, including organ transplantation and graft versus host disease (GVHD) but they have limitations. Rat models are interesting complementary alternatives presenting advantages over mice, such as their size and their active complement compartment. Immunodeficient rats have been generated but human immune responses have not yet been described. METHODS: We generated immunodeficient Rat Rag-/- Gamma chain-/- human signal regulatory protein alpha-positive (RRGS) rats combining Rag1 and Il2rg deficiency with the expression of human signal regulatory protein alpha, a negative regulator of macrophage phagocytosis allowing repression of rat macrophages by human CD47-positive cells. We then immune humanized RRGS animals with human peripheral blood mononuclear cells (hPBMCs) to set up a human acute GVHD model. Treatment of GVHD was done with a new porcine antihuman lymphocyte serum active through complement-dependent cytotoxicity. We also established a tumor xenograft rejection model in these hPBMCs immune system RRGS animals by subcutaneous implantation of a human tumor cell line. RESULTS: RRGS animals receiving hPBMCs showed robust and reproducible reconstitution, mainly by T and B cells. A dose-dependent acute GVHD process was observed with progressive weight loss, tissue damage, and death censoring. Antihuman lymphocyte serum (L1S1) antibody completely prevented acute GVHD. In the human tumor xenograft model, detectable tumors were rejected upon hPBMCs injection. CONCLUSIONS: hPBMC can be implanted in RRGS animals and elicit acute GVHD or rejection of human tumor cells and these are useful models to test new immunotherapies.


Assuntos
Antígenos de Diferenciação/imunologia , Proteínas de Homeodomínio/imunologia , Hospedeiro Imunocomprometido , Cadeias gama de Imunoglobulina/imunologia , Síndromes de Imunodeficiência/imunologia , Leucócitos Mononucleares/transplante , Receptores Imunológicos/imunologia , Animais , Antígenos de Diferenciação/genética , Soro Antilinfocitário/farmacologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Cadeias gama de Imunoglobulina/genética , Síndromes de Imunodeficiência/genética , Leucócitos Mononucleares/imunologia , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores Imunológicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Eur J Clin Invest ; 49(4): e13069, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30620396

RESUMO

Antibodies of non-human mammals are glycosylated with carbohydrate antigens, such as galactose-α-1-3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc). These non-human carbohydrate antigens are highly immunogenic in humans due to loss-of-function mutations of the key genes involved in their synthesis. Such immunogenic carbohydrates are expressed on therapeutic polyclonal rabbit anti-human T-cell IgGs (anti-thymocyte globulin; ATG), the most popular induction treatment in allograft recipients. To decipher the quantitative and qualitative response against these antigens in immunosuppressed patients, particularly against Neu5Gc, which may induce endothelial inflammation in both the graft and the host. We report a prospective study of the antibody response against α-Gal and Neu5Gc-containing glycans following rabbit ATG induction compared to controls. We show a drop in the overall levels of anti-Neu5Gc antibodies at 6 and 12 months post-graft compared to the pre-existing levels due to the major early immunosuppression. However, in contrast, in a cross-sectional study there was a highly significant increase in anti-Neu5Gc IgGs levels at 6 months post-graft in the ATG-treated compared to non-treated patients(P = 0.007), with a clear hierarchy favouring anti-Neu5Gc over anti-Gal response. A sialoglycan microarray analysis revealed that the increased anti-Neu5Gc IgG response was still highly diverse against multiple different Neu5Gc-containing glycans. Furthermore, some of the ATG-treated patients developed a shift in their anti-Neu5Gc IgG repertoire compared with the baseline, recognizing different patterns of Neu5Gc-glycans. In contrast to Gal, Neu5Gc epitopes remain antigenic in severely immunosuppressed patients, who also develop an anti-Neu5Gc repertoire shift. The clinical implications of these observations are discussed.


Assuntos
Anticorpos/imunologia , Imunidade Celular/fisiologia , Imunoglobulina G/farmacologia , Fatores Imunológicos/farmacologia , Transplante de Rim/métodos , Ácidos Neuramínicos/imunologia , Adulto , Idoso , Anticorpos/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Timócitos/imunologia , Imunologia de Transplantes/fisiologia , Transplante Homólogo
9.
Transplantation ; 101(10): 2501-2507, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28198767

RESUMO

BACKGROUND: Polyclonal antihuman thymocyte rabbit IgGs (antithymocyte globulin [ATG]) are popular immunosuppressive drugs used to prevent or treat organ or bone-marrow allograft rejection, graft versus host disease, and autoimmune diseases. However, animal-derived glycoproteins are also strongly immunogenic and rabbit ATG induces serum sickness disease in almost all patients without additional immunosuppressive drugs, as seen in the Study of Thymoglobulin to arrest Type 1 Diabetes (START) trial of ATG therapy in new-onset type 1 diabetes. METHODS: Using enzyme-linked immunosorbent assay, we analyzed serial sera from the START study to decipher the various anti-ATG specificities developed by the patients in this study: antitotal ATG, but also antigalactose-α1-3-galactose (Gal) and anti-Neu5Gc antibodies, 2 xenocarbohydrate epitopes present on rabbit IgG glycans and lacking in humans. RESULTS: We show that diabetic patients have substantial levels of preexisting antibodies of the 3 specificities, before infusion, but of similar levels as healthy individuals. ATG treatment resulted in highly significant increases of both IgM (for anti-ATG and anti-Neu5Gc) and IgG (for anti-ATG, -Gal, and -Neu5Gc), peaking at 1 month and still detectable 1 year postinfusion. CONCLUSIONS: Treatment with rabbit polyclonal IgGs in the absence of additional immunosuppression results in a vigorous response against Gal and Neu5Gc epitopes, contributing to an inflammatory environment that may compromise the efficacy of ATG therapy. The results also suggest using IgGs lacking these major xenoantigens may improve safety and efficacy of ATG treatment.


Assuntos
Soro Antilinfocitário/uso terapêutico , Diabetes Mellitus Tipo 1/cirurgia , Rejeição de Enxerto/prevenção & controle , Terapia de Imunossupressão/métodos , Transplante de Pâncreas/efeitos adversos , Adolescente , Adulto , Animais , Criança , Ensaio de Imunoadsorção Enzimática , Feminino , Rejeição de Enxerto/imunologia , Humanos , Imunossupressores/uso terapêutico , Masculino , Coelhos , Adulto Jovem
10.
PLoS One ; 11(6): e0156775, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280712

RESUMO

Polyclonal xenogenic IgGs, although having been used in the prevention and cure of severe infectious diseases, are highly immunogenic, which may restrict their usage in new applications such as Ebola hemorrhagic fever. IgG glycans display powerful xenogeneic antigens in humans, for example α1-3 Galactose and the glycolyl form of neuraminic acid Neu5Gc, and IgGs deprived of these key sugar epitopes may represent an advantage for passive immunotherapy. In this paper, we explored whether low immunogenicity IgGs had a protective effect on a guinea pig model of Ebola virus (EBOV) infection. For this purpose, a double knock-out pig lacking α1-3 Galactose and Neu5Gc was immunized against virus-like particles displaying surface EBOV glycoprotein GP. Following purification from serum, hyper-immune polyclonal IgGs were obtained, exhibiting an anti-EBOV GP titer of 1:100,000 and a virus neutralizing titer of 1:100. Guinea pigs were injected intramuscularly with purified IgGs on day 0 and day 3 post-EBOV infection. Compared to control animals treated with IgGs from non-immunized double KO pigs, the anti-EBOV IgGs-treated animals exhibited a significantly prolonged survival and a decreased virus load in blood on day 3. The data obtained indicated that IgGs lacking α1-3 Galactose and Neu5Gc, two highly immunogenic epitopes in humans, have a protective effect upon EBOV infection.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Ebola/uso terapêutico , Galactose/deficiência , Doença pelo Vírus Ebola/prevenção & controle , Imunoglobulina G/imunologia , Ácidos Neuramínicos/metabolismo , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Anti-Idiotípicos/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Cobaias , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/imunologia , Masculino , Suínos , Vacinação , Carga Viral
11.
J Clin Invest ; 125(12): 4655-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26551683

RESUMO

BACKGROUND: Rabbit-generated antithymocyte globulins (ATGs), which target human T cells, are widely used as immunosuppressive agents during treatment of kidney allograft recipients. However, ATGs can induce immune complex diseases, including serum sickness disease (SSD). Rabbit and human IgGs have various antigenic differences, including expression of the sialic acid Neu5Gc and α-1-3-Gal (Gal), which are not synthesized by human beings. Moreover, anti-Neu5Gc antibodies have been shown to preexist and be elicited by immunization in human subjects. This study aimed to assess the effect of SSD on long-term kidney allograft outcome and to compare the immunization status of grafted patients presenting with SSD following ATG induction treatment. METHODS: We analyzed data from a cohort of 889 first kidney graft recipients with ATG induction (86 with SSD [SSD(+)] and 803 without SSD [SSD(-)]) from the Données Informatisées et Validées en Transplantation data bank. Two subgroups of SSD(+) and SSD(-) patients that had received ATG induction treatment were then assessed for total anti-ATG, anti-Neu5Gc, and anti-Gal antibodies using ELISA assays on sera before and after transplantation. RESULTS: SSD was significantly associated with long-term graft loss (>10 years, P = 0.02). Moreover, SSD(+) patients exhibited significantly elevated titers of anti-ATG (P = 0.043) and anti-Neu5Gc (P = 0.007) IgGs in late post-graft samples compared with SSD(-) recipients. CONCLUSION: In conclusion, our data indicate that SSD is a major contributing factor of late graft loss following ATG induction and that anti-Neu5Gc antibodies increase over time in SSD(+) patients. FUNDING: This study was funded by Société d'Accélération du Transfert de Technologies Ouest Valorisation, the European FP7 "Translink" research program, the French National Agency of Research, Labex Transplantex, the Natural Science and Engineering Research Council of Canada, and the Canadian Foundation for Innovation.


Assuntos
Soro Antilinfocitário/administração & dosagem , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Rim , Doença do Soro/sangue , Adulto , Idoso , Animais , Soro Antilinfocitário/efeitos adversos , Feminino , Rejeição de Enxerto/sangue , Humanos , Isoanticorpos/sangue , Rim/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Coelhos , Doença do Soro/induzido quimicamente , Doença do Soro/imunologia , Ácidos Siálicos/sangue
12.
Xenotransplantation ; 22(2): 85-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25308416

RESUMO

Human beings do not synthesize the glycolyl form of the sialic acid (Neu5Gc) and only express the acetylated form of the sugar, whereas a diet-based intake of Neu5Gc provokes a natural immunization and production of anti-Neu5Gc antibodies in human serum. However, Neu5Gc is expressed on mammal glycoproteins and glycolipids in most organs and cells. We review here the relevance of Neu5Gc and anti-Neu5Gc antibodies in the context of xenotransplantation and the use of animal-derived molecules and products, as well as the possible consequences of a long-term exposure to anti-Neu5Gc antibodies in recipients of xenografts. In addition, the importance of an accurate estimation of the anti-Neu5Gc response following xenotransplantation and the future contribution of knockout animals mimicking the human situation are also assessed.


Assuntos
Anticorpos Heterófilos/sangue , Ácidos Neuramínicos/imunologia , Transplante Heterólogo/efeitos adversos , Animais , Animais de Laboratório , Antígenos Heterófilos/genética , Antígenos Heterófilos/imunologia , Humanos , Imunidade Inata , Modelos Animais , Transplante de Órgãos/efeitos adversos , Primatas , Sus scrofa/genética , Sus scrofa/imunologia
13.
Transpl Int ; 24(6): 536-47, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21457359

RESUMO

Despite their utility, immunosuppressive treatments have numerous side effects, including infectious complications, malignancies and metabolic disorders, all of which contribute to long-term graft loss. In addition to the development of new pharmaceutical products with reduced toxicity and more comfortable modes of administration, tailoring immunosuppression according to the immune status of each patient would represent a significant breakthrough. Gene expression profiling has been shown to be a clinically relevant monitoring tool. In this paper, we have assessed the overall long-term kidney transplant outcome and attempted to identify operationally tolerant-like patients among recipients with stable clinical status at least 5 years post-transplantation. We thus measured a combination of noninvasive blood biomarkers of operational tolerance in a cohort of 144 stable patients and showed that only 3.5% exhibited a gene expression profile of operational tolerance, suggesting that such a profile can be detected under immunosuppressive therapy but that its frequency is low in kidney transplant recipients when compared with liver transplant recipients. We suggest that a rational approach to patient selection, based on a combination of clinical and biological characteristics, may help to provide a safer method for identification of patients potentially suitable for immunosuppressive drug weaning procedures.


Assuntos
Tolerância Imunológica/genética , Transplante de Rim/imunologia , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Inibidores de Calcineurina , Criança , Feminino , Perfilação da Expressão Gênica , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/efeitos adversos , Transplante de Fígado/imunologia , Masculino , Pessoa de Meia-Idade , Doadores de Tecidos/classificação
14.
Proc Natl Acad Sci U S A ; 103(13): 5230-5, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16547129

RESUMO

Symbiosis between legumes and Rhizobium bacteria leads to the formation of root nodules where bacteria in the infected plant cells are converted into nitrogen-fixing bacteroids. Nodules with a persistent meristem are indeterminate, whereas nodules without meristem are determinate. The symbiotic plant cells in both nodule types are polyploid because of several cycles of endoreduplication (genome replication without mitosis and cytokinesis) and grow consequently to extreme sizes. Here we demonstrate that differentiation of bacteroids in indeterminate nodules of Medicago and related legumes from the galegoid clade shows remarkable similarity to host cell differentiation. During bacteroid maturation, repeated DNA replication without cytokinesis results in extensive amplification of the entire bacterial genome and elongation of bacteria. This finding reveals a positive correlation in prokaryotes between DNA content and cell size, similar to that in eukaryotes. These polyploid bacteroids are metabolically functional but display increased membrane permeability and are nonviable, because they lose their ability to resume growth. In contrast, bacteroids in determinate nodules of the nongalegoid legumes lotus and bean are comparable to free-living bacteria in their genomic DNA content, cell size, and viability. Using recombinant Rhizobium strains nodulating both legume types, we show that bacteroid differentiation is controlled by the host plant. Plant factors present in nodules of galegoid legumes but absent from nodules of nongalegoid legumes block bacterial cell division and trigger endoreduplication cycles, thereby forcing the endosymbionts toward a terminally differentiated state. Hence, Medicago and related legumes have evolved a mechanism to dominate the symbiosis.


Assuntos
Ciclo Celular , Células Eucarióticas/fisiologia , Fabaceae/fisiologia , Rhizobium/citologia , Crescimento Celular , DNA Bacteriano/genética , Fabaceae/classificação , Genoma Bacteriano/genética , Rhizobium/fisiologia , Simbiose
15.
Nat Rev Genet ; 6(8): 643-8, 2005 08.
Artigo em Inglês | MEDLINE | ID: mdl-16012527

RESUMO

Accurate and comprehensive sequence coverage for large genomes has been restricted to only a few species of specific interest. Lower sequence coverage (survey sequencing) of related species can yield a wealth of information about gene content and putative regulatory elements. But survey sequences lack long-range continuity and provide only a fragmented view of a genome. Here we show the usefulness of combining survey sequencing with dense radiation-hybrid (RH) maps for extracting maximum comparative genome information from model organisms. Based on results from the canine system, we propose that from now on all low-pass sequencing projects should be accompanied by a dense, gene-based RH map-construction effort to extract maximum information from the genome with a marginal extra cost.


Assuntos
Mapeamento de Híbridos Radioativos , Análise de Sequência de DNA , Animais , Cães , Humanos , Filogenia
16.
BMC Genomics ; 5: 65, 2004 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-15363096

RESUMO

BACKGROUND: The 156 breeds of dog recognized by the American Kennel Club offer a unique opportunity to map genes important in genetic variation. Each breed features a defining constellation of morphological and behavioral traits, often generated by deliberate crossing of closely related individuals, leading to a high rate of genetic disease in many breeds. Understanding the genetic basis of both phenotypic variation and disease susceptibility in the dog provides new ways in which to dissect the genetics of human health and biology. RESULTS: To facilitate both genetic mapping and cloning efforts, we have constructed an integrated canine genome map that is both dense and accurate. The resulting resource encompasses 4249 markers, and was constructed using the RHDF5000-2 whole genome radiation hybrid panel. The radiation hybrid (RH) map features a density of one marker every 900 Kb and contains 1760 bacterial artificial chromosome clones (BACs) localized to 1423 unique positions, 851 of which have also been mapped by fluorescence in situ hybridization (FISH). The two data sets show excellent concordance. Excluding the Y chromosome, the map features an RH/FISH mapped BAC every 3.5 Mb and an RH mapped BAC-end, on average, every 2 Mb. For 2233 markers, the orthologous human genes have been established, allowing the identification of 79 conserved segments (CS) between the dog and human genomes, dramatically extending the length of most previously described CS. CONCLUSIONS: These results provide a necessary resource for the canine genome mapping community to undertake positional cloning experiments and provide new insights into the comparative canine-human genome maps.


Assuntos
Cães/genética , Genoma , Animais , Mapeamento Cromossômico/métodos , Cromossomos Artificiais Bacterianos , Marcadores Genéticos , Humanos , Hibridização in Situ Fluorescente , Repetições de Microssatélites , Mapeamento de Híbridos Radioativos , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...